Target-sensitive immunoliposomes as an efficient drug carrier for antiviral activity.
نویسندگان
چکیده
We have shown previously that target-sensitive immunoliposomes composed of palmitoyl antibody stabilized phosphatidylethanolamine bilayers could be destabilized by binding to the target cells (Ho, R. J. Y., Rouse, B. T., and Huang, L., Biochemistry (1986) 25, 5500-5506). Target-sensitive immunoliposome-encapsulated and free cytotoxic drugs of nucleoside analogs cytosine-beta-D-arabinoside (AraC) or acycloguanosine (acyclovir, ACV) were compared for their antiviral efficacy and cell cytotoxicity. Target-insensitive immunoliposomes and nontargeted liposomes were also investigated. When the mouse fibroblast L929 cells were infected at low multiplicity with herpes simplex virus, AraC encapsulated in target-sensitive immunoliposomes composed of transphosphatidylated egg phosphatidylethanolamine effectively inhibited virus replication and had far less cell cytotoxicity than free drug. As a measure of cytotoxicity, the drug concentration required to inhibit 50% of [3H]thymidine incorporation from 6 to 42 h (CD50) was determined. For free AraC, this value was 0.3 ng/ml, whereas for target-sensitive immunoliposome-encapsulated AraC, the CD50 exceeded 1 microgram/ml. However, target-sensitive immunoliposome-encapsulated AraC was virus inhibitory (50% effective dose = ED50) at 1.8 ng/ml. A free drug concentration of at least 1000-fold greater was required for comparable antiviral activity. A similar phenomenon was observed when ACV was administered via target-sensitive immunoliposomes. The CD50 values of the free and target-sensitive immunoliposome-encapsulated ACV were 12.5 ng/ml and 1.4 micrograms/ml, respectively, whereas the ED50 values of the free and target-sensitive immunoliposome-encapsulated ACV were 1.1 and 125 ng/ml, respectively. Consequently, our results indicated the superiority of target-sensitive immunoliposomes at drug delivery, especially when drugs were cytotoxic to cells. The use of liposomes of the target-insensitive variety provided some enhancement of activity, but this was several-fold less than that observed with target-sensitive immunoliposomes. In addition, the nucleoside transport inhibitors, p-nitrothiobenzylinosine and dipyridamole, were shown to inhibit the liposome-mediated antiviral activity of AraC. This finding indicated that site-specific cytosolic delivery of nucleoside analogs by target-sensitive immunoliposomes involved a cellular nucleoside transport system. A mechanism of action is proposed.
منابع مشابه
pH-sensitive immunoliposomes as an efficient and target-specific carrier for antitumor drugs.
pH-sensitive immunoliposomes composed of dioleoylphosphatidyl-ethanolamine and oleic acid (8:2) significantly enhanced the cytotoxic effect of the entrapped drug 1-beta-D-arabinofuranosylcytosine (ara-C) to target L-929 cells, as compared to free drug, drug encapsulated in antibody-free liposomes, or in pH-insensitive immunoliposomes. These pH-sensitive immunoliposomes were ineffective against ...
متن کاملCarbon and BN nanocones as nano carriers for 5-Fluorouracil, a DFT study
5-Fluorouracil (5-FU) is an anticancer drug. In this work, we have investigated the electronic properties and topological analysis of interaction between 5-FU and carbon nanocone and BN nanocone. The structural stability of isomer complexes of 5-FU with carbon nanocone and BN nanocone have been investigated for two position of interactions. We have found that the most stable complexes are forme...
متن کاملFe3O4@SiO2-NH2 as an efficient nanomagnetic carrier for controlled loading and release of acyclovir
Considering many applications of functionalized metal oxide nanoparticles in magnetic resonance imaging, drug delivery, neutron irradiation, electronics, catalysis and optics; herein, a new strategy is developed to functionalize magnetite nanoparticles to improve their performances in the delivery of acyclovir. In this study, magnetite Fe3O4 nanoparticles are synthesized b...
متن کاملCarbon and BN nanocones as nano carriers for 5-Fluorouracil, a DFT study
5-Fluorouracil (5-FU) is an anticancer drug. In this work, we have investigated the electronic properties and topological analysis of interaction between 5-FU and carbon nanocone and BN nanocone. The structural stability of isomer complexes of 5-FU with carbon nanocone and BN nanocone have been investigated for two position of interactions. We have found that the most stable complexes are forme...
متن کاملFe3O4@SiO2-NH2 as an efficient nanomagnetic carrier for controlled loading and release of acyclovir
Considering many applications of functionalized metal oxide nanoparticles in magnetic resonance imaging, drug delivery, neutron irradiation, electronics, catalysis and optics; herein, a new strategy is developed to functionalize magnetite nanoparticles to improve their performances in the delivery of acyclovir. In this study, magnetite Fe3O4 nanoparticles are synthesized b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 262 29 شماره
صفحات -
تاریخ انتشار 1987